Protein Synthesis-Independent Plasticity Mediates Rapid and Precise Recovery of Deprived Eye Responses

نویسندگان

  • Thomas E. Krahe
  • Alexandre E. Medina
  • Ruben E. de Bittencourt-Navarrete
  • Raymond J. Colello
  • Ary S. Ramoa
چکیده

Monocular deprivation (MD) for a few days during a critical period of development leads to loss of cortical responses to stimulation of the deprived eye. Despite the profound effects of MD on cortical function, optical imaging of intrinsic signals and single-unit recordings revealed that deprived eye responses and orientation selectivity recovered a few hours after restoration of normal binocular vision. Moreover, recovery of deprived eye responses was not dependent upon mRNA translation, but required cortical activity. Interestingly, this fast recovery and protein synthesis independence was restricted to the hemisphere contralateral to the previously deprived eye. Collectively, these results implicate a relatively simple mechanistic process in the reactivation of a latent set of connections following restoration of binocular vision and provide new insight into how recovery of cortical function can rapidly occur in response to changes in sensory experience.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sleep does not enhance the recovery of deprived eye responses in developing visual cortex.

Monocular deprivation (MD) during a critical period of visual development triggers a rapid remodeling of cortical responses in favor of the open eye. We have previously shown that this process is enhanced by sleep and is inhibited when the sleeping cortex is reversibly inactivated. A related but distinct form of cortical plasticity is evoked when the originally deprived eye (ODE) is reopened, a...

متن کامل

Recovery in the Blink of an Eye

Sensory deprivation sheds light on cortical plasticity mechanisms, but recovery of lost brain function may bear the greatest clinical relevance. Ramoa and colleagues now find that binocular recovery from monocular occlusion can be extraordinarily rapid, independent of protein synthesis, and precise. Reactivation of latent connections may then reverse amblyopia.

متن کامل

Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.

Cortical binocularity is abolished by monocular deprivation (MD) during a critical period of development lasting from approximately postnatal day (P) 35 to P70 in ferrets. Although this is one of the best-characterized models of neural plasticity and amblyopia, very few studies have examined the requirements for recovery of cortical binocularity and orientation selectivity of deprived eye respo...

متن کامل

Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity

Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether h...

متن کامل

Tumor Necrosis Factor-α Mediates One Component of Competitive, Experience-Dependent Plasticity in Developing Visual Cortex

Rapid, experience-dependent plasticity in developing visual cortex is thought to be competitive. After monocular visual deprivation, the reduction in response of binocular neurons to one eye is matched by a corresponding increase to the other. Chronic optical imaging in mice deficient in TNFalpha reveals the normal initial loss of deprived-eye responses, but the subsequent increase in response ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2005